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1 Introduction

High-order Harmonic Generation (HHG) in plasmas is an area of research that
is of broad fundamental and practical interest. As the oscillatory modes of
ionized particles resulting from excitation by a laser pulse could reveal valuable
insights into the properties of such ions and their states, HHG remains not only
a fertile area of interest, but also a valuable experimental tool. However, I took a
more generalized focus in my work during the summer under Professor Herschel
Rabitz and the Program in Plasma Science and Technology (PPST). While
HHG is a phenomenon that occurs in laser driven plasmas, there is a growing
body of inquiry concentrated upon the effects of lasers at various intensities and
frequencies upon molecules in general — specifically, upon the potential for lasers
to alter the Hamiltonian of a system in order to optimize the wave function in
a desired way. One immediate application of such methods, known as quantum
control theory (QCT), would be the ability for photons to act as “photonic
reagents” within various chemical reactions, including with ionized products.

However, while a significant amount of literature concerning quantum con-
trol theory has been developed in recent decades, there remains a scarcity of
work regarding the theory when applied to many-particle systems. Therefore,
this summer I studied QCT in the large multiple-particle regime. It is my ex-
pectation that after the theory is developed beyond the control of few-particle
systems, not only would the practical applications of quantum control with pho-
tonic reagents be enabled, the manipulation and evolution of the Hamiltonians
of many-particle systems would also emerge as a broad field of study. The HHG
phenomena seen in plasmas will thus be subsumed into the larger regime of
molecular- and atomic-scale transformations possible with the quantum control
of many-particle systems.

To address the many-particle control challenge above, several theoretical
and computational methods have been developed, which I will build on in my
research, and upon which I will further expand. Although the Hamiltonians
and wave functions for many-particle systems become extraordinarily difficult



to calculate as the complexity of a system increases, the Hartree-Fock method
has proved to be an extremely effective method of approximation outside of the
field of control. More specifically, and more relevant to my work, adaptation
of the multi-configuration time-dependent Hartree (MCTDH) method would
be extremely useful in improving the speed and efficiency of the calculations
required to evolve the relevant wavefunctions, without sacrificing much accu-
racy. Once we have established the effectiveness of the TDH approximation, we
can begin to implement it in the DMORPH optimization algorithm as a direct
application to QCT.

2 Preliminaries

Quantum optimal control theory (OCT) generally concerns the problem of is
to optimize an objective functional J[e(-)] (usually the expectation value of an
observable) through a control function/field e(+).

Several quantum OCT problems concern wavefunctions \Il(ﬁ,rg, ...) that
describe systems of several particles interacting with the external control field
€(-) and possibly with each other, as described by a Hamiltonian
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is the free-field Hamiltonian and }ﬂ?} (U(7),U(r)*, e(t)) is the (generally non-
linear) control field Hamiltonian.

3 The time-dependent Hartree (TDH) approxi-
mation

In order to jirriplify calculations involved in the determination of the wave-
function ¥(rq,rg,...) describing the behavior of systems of several interacting
particles, we employ the approximation of the time-dependent Hartree (TDH)

ansatz:
| (1)) ~ alt) H W3 (t)) (3)

where a(t) is a global phase term that can absorb the phases of each individual
single-particle wavefunction W(r;) such that |a(t)|? = 1.

Given a Hamiltonian H, and gauging the phase by setting (U] % |[T,) =0
we then have the Schrédinger equation:
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is thus the TDH equation of motion for |¥;).
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4 The D-MORPH method

The D-MORPH (diffeomorphic modulation under observable-response-preserving
homotopy) method is an optimization algorithm by which one may evolve an
initial Hamiltonian H(e(¢)), which depends on a control function €(t), into a
final Hamiltonian H/ that optimizes the objective functional J of the control
problem, by introducing a homotopy parameter s to the control function €(s, t).
The homotopy upon the control function €(s,t) is defined by the ansatz:
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This ansatz allows for the variation in J[e(s, t)] provided by the D-MORPH
method to be monotonically convergent as:
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Given an initial state of the system t = 0, |¥(0)), a co-state |A(ty)) =
A|W(ts)) for some operator A to be determined, both of which are approximated

by the TDH ansatz 3 evolve under an effective Hamiltonian H (e(s,t) (cf. ?7?):
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and given a sufficiently dense grid of time points t = 0, At, 2At, ..., N At,
where N; = ty/At and homotopy parameter points s = 0, As,2As, ..., each
iteration of the general D-MORPH method for each s = kAs proceeds as follows:

1. Integrate forward |¥(¢)) from iAt to (¢ + 1)At under 14 subject to the
initial condition |¥(0)).

2. Integrate backward |A(t)) from At to (i — 1)At under 15 subject to a
terminal condition |A(ty)).

3. Use |T(t)) and |A(t)) to compute the gradient 6‘&?55)]

4. Integrate aeéi’t) = 5‘26(::;)] from kAs to (k4 1)As to update e(kAs, t) to

e((k+1)As, 1)

Oe(s,t) _ 0J[e(st)] _ 0)

This algorithm continues until the optimal condition (=5~ = 5e(s )

is reached.

5 Example 1: Controlling the orientation of a
single dipole rotor confined to a plane

We now turn our attention to implementing the D-MORPH method in the case
of the orientation of a single dipole rotor interacting with a control field e(¢).
Given moment of inertia I and a dipole moment of p, we have a Hamiltonian
(in the angular representation):

h? o
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We define our objective functional J[e(t)] to be:

Jo = (WOleos@¥(@))+a [ et (0] (G- EE)+HOI(

(

—H)|A(t))dt

SESRS

)

Taking the gradient %, we find:

0 [e(s,)]/0€(s,t) = —pe(t) ((A(t)| cos(®) [W(2)) + (U (#)] cos(P) [A(F)))

6 Example 2: Controlling the orientation of two
coupled dipole rotors confined to a plane

6.1 The TDH equations of motion

In the case of a pair of coupled dipole rotors confined to a plane, the Hamiltonian
H'? becomes (in the angular representation):
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The TDH ansatz and the corresponding wavefunction thus become:
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The TDH ansatz thus satisfies the follow equations of motion:
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or, expressed in terms of wavefunctions:
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Our goal is to express 23 and 24 as matrix equations for computational
purposes:
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where ¢,,, = (m;|¥;) and where each |m;) is an eigenstate of the free-field
Hamiltonian Hy; = —Z—ja% such that
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We have:
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Whew. Thus, we have:
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Keeping the normalization of the wavefunctions Y |c;,[? = |¥;]* = 1, in
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mind, we arrive at the simplified form:
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Then, the equations of motion become:
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Note that in the limit where R — oo, the equations of motion for each rotor
become uncoupled from those of the other rotor, as is expected:
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in 37 and 39 result in an overall global phase of Uy ()~} = e~ # Jb1(Mdt i @,
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Wy, Thus, if we apply the unitary transformations that will yield the same
expectation values:
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and let é,,, = (m1|®1) and ¢, = (Mm2|P3), we have the following, much-
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Note that, had we not included the global phase in our original TDH Ansatz,
we could have implemented similar unitary transformations as above in the
subsequent derivation to arrive at identical equations of motion.

6.2 Numerical methods

There are several numerical methods we can employ to implement the above
equations of motion derived from the TDH ansatz. For purposes of efficiency
and speed, we have elected the split-operator approximation method to solve
for and evolve our wavefunction, following the example provided by Hongling
Yu, rather than the more exact short-time propagator and Runge-Kutta. As
we shall see, for cases in which the TDH ansatz is valid, this approximation
method does not sacrifice much accuracy. In this section, we shall discuss the
two alternatives to the more cumbersome Runge-Kutta ODE solver: the short-
time propagator and the split-operator method. In the next section, we shall
compare the results given by the TDH ansatz to the Exact solution for the
coupled dipole wavefunctions.

6.2.1 Short-time propagator

Given the Hermitian Hamiltonian operators H ! in equations 45 and 46, and
letting H’, be diagonalized by the unitary matrix A; such that for:

oY = ATH A,
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where the j-th row vector A;; is the orthogonal eigenvector corresponding
to the j-th eigenvalue \; = HY; ; of H’.

Thus, if we split our propagation time 7" into increments of dt such that
T/dt = n, {0,dt,2dt, ... ,ndt}, the short-time propagator proceeds by incre-
menting:

Oy(t+dt) = Are TP AT D, (1)
Byt 4 dt) = Age wHZ A AT B, (1)

6.2.2 Split-operator approximation

Given the Hamiltonian operators H % in equations 45 and 46, we can deconstruct
it as follows:

H} = Ho; +V;
where
h? o, 1
Ho,, .. = 6mi7m;ﬁmi + iﬁ(t)ﬂl (Omm/+1 + Omym?—1) (48)

and V; are the respective potentials/interaction terms for each dipole rotor.
Then, letting Hp, and V; be diagonalized by the unitary matrices B; and C;
such that:

HY = B! Hy,B;
V! = Clv,c;
where the j-th row vector B;, is the orthogonal eigenvector corresponding

to the j-th eigenvalue \; = H{ ;; of Hy, and the j-th row vector Cy; is the
orthogonal eigenvector corresponding to the j-th eigenvalue A; = V/; ; of V;.

i
Thus, if we split our propagation time 7' into increments of dt such that
T/dt = n, {0,dt,2dt,...,ndt}, the short-time propagator proceeds by incre-
menting:

Oy(t + dt) = (Bre~ s Ho1d Bl)(Cre=# V14O ) (Bre~ 3 Ho1 4 BT )) Dy (1)
Dy (t + dt) = ((Bye™ 2mHo2 8t BI) (Che 1 V24t O ) (Bye ™ 27 Ho2 4 BT )) By ()

6.3 Comparing the accuracy of the TDH ansatz to the
exact solution

6.3.1 The exact solution

The exact solution for the state of the combined wavefunction of the two rotors
is as follows:

(W1Ws) =D, 2oy Cmaymg M) @ |mz)
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The Hamiltonian H?! governing |¥;Ws,) is given by (in the angular repre-
sentation):

2 2 2
H2 = —%(8‘97)% R1+1® 8673) —e(t)(p1cosdy @1+ 1@ g cos p)

+ (1 - 3cos?6) cos ¢y @ cos gg + (1 — 3sin? 0) sin ¢; ® sin ¢y

+ 3 cos O sin H(cos ¢1 ® sin pg + sin 1 @ cos ¢a)]

Then:
ih2 |0, 0,) = HP |0, 0,)

The exact solution to these equations of motion was given by Hongling Yu by
constructing out of the elements of the 2x+m+1-by-2xm—+1 tensor representation
of [W1Wy) a (2 % m 4 1)? vector, and out of H? a corresponding (2 % m + 1)3-
by-(2 * m + 1)? matrix. The solution is then given by iterating a split-operator
method similar to that described in 6.2.2.

6.3.2 Comparison

We now compare the results given by the TDH ansatz as solved by the split-
operator method to those given by the TDH ansatz as solved by the short-time
propagator and Runga-Kutta, as well as the exact solution introduced above.
The following figures show the time evolution of the wavefunctions (manifested
by the evolution of the expected value (cos@;|¥q|cospi) + (cos @a|Va|cos ¢a))
of two rotors with the identical rotational constant of B = 4.033e — 17J, dipole
moment pu = 0.709¢ — 18J/T, orientation § = m/2 over 10 rotational periods
(T =272 =1.6430e — 10s), over a range of separations r. The control field is:

€(t) = ao[0.2 cos(wit) + 0.3 cos(wat) + 0.5 cos(wst)]e~ 5T/ BT (49)

where ag = 1e13 V/m, and wy = B/h, wy = 3B/h, w3 = 4B/h.
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Figure 1: 50 nm

Figure 2: 25 nm
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Figure 3: 10 nm

Figure 4: 7.5 nm
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Figure 5: 5 nm

Figure 6: 4 nm
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Figure 7: 3 nm

Clearly, the split operator method agrees with the more accurate Runga-
Kutta and short-time-propagator methods in the region where the interaction
term does not dominate the Hamiltonian (r > 3 nm). In addition, for distances
where the interaction term becomes negligible (r > 6 nm), the TDH ansatz
and the exact solution agree almost completely. Small departures from the
exact solution in the TDH ansatz solution only become manifested, thus, as
the interaction term becomes stronger and strong in the region of interest (3
nm < r < 6 nm), before the approximation completely breaks down.

7 Conclusion

Having established the applicability and utility of the TDH ansatz in solving
the equations of motion, our next step would be to implement it within the
DMORPH scheme outlined earlier in Section 4. However, several computational
issues still persist within the evaluation of the gradient. As of now, we have
determined that operators involved in evolving the Laplace multiplier costate
|A\) are not Hermitian. However, methods still exist for diagonalizing them in
order to facilitate fast calculations of their corresponding unitary operators.
The focus of our research right now lies in examining and implementing these
methods.

After we have successfully used TDH to reduce the calculation time required
to optimize the objective functional through DMORPH in the two-rotor case,
the flexibility and efficiency of TDH will allow us to immediately adapt this
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method for the three-rotor case. Afterwards, we will also be able to examine
systems that involve entanglement, as well as generalizing to systems possessing
other potentials.
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